Nanomedicne: Prevention, Diagnosis & Treatment

Hossein Ghanbari, MD, PhD

School of Advanced Technologies in Medicine, TUMS, Tehran, Iran

Nanotechnology

How Small is Nano?

NanoMan would only stand 36 nm tall on the basketball!

STOUT UNIVERSITY OF WISCONSIN

NANOMEDICINE

NANOMEDICINE

- Medical application of nanotechnology
 - Prevention: nanovaccines
 - Novel diagnostics: nanobiosensors, QDs, lab on a chip, imaging contrast agents,
 - Novel therapeutics: Targeted drug delivery systems, theranostics
 - Application of nanotechnology in regenerative medicine
 - Application of nanotechnology in **biomedical** implants and devices

PREVENTION: NANOVACCINES

DIAGNOSTICS: RAPID TESTS

MICROFLUIDICS

The science of manipulating small amounts $(10^{-9} \text{ to } 10^{-18} \text{ L})$ of fluids in microfabricated hollow channels:

- o to generate and precisely tune dynamic fluid flows
- o spatiotemporal gradients
- deliver nutrients and other chemical cues to cells in a controlled manner

ORGAN ON A CHIP

mmm

TRENDS in Cell Biology

A human breathing lung-on-a-chip

Different OOC models with their corresponding organs in the body.

The human-on-a-chip concept

DIAGNOSIS: IMAGING

BIOLUMINESCENT NANORODS

Nanorods (shell of cadmium sulfide and a core of cadmium selenide) modified with firefly enzymes glow orange.

Fluorescent imaging

Quantum dot

IRON OXIDE NANOPARTICLES

- One of the most frequently used agents for cell tracking
- An MRI contrast agent (provides negative T2 contrast and T1 in ultra small nanoparticles)
- Enable the guidance and navigation of labeled cells after transplantation
- variety of sizes of iron oxide particles available for cell labeling

Magnetic resonance imaging of *in situ* labeled neural precursor cell migration.

NANOTECHNOLOGY IN NOVEL THERAPEUTICS

LIPOSOMAL NANOCARRIERS

- Liposomes remain one of the first drug delivery carrier
- More than 2000 papers and 200 reviews published in 2011 on the topic
- > many liposomal drugs approved for cancer therapy:
 - Doxil for doxorubicin (Johnson & Johnson, New Brunswick, USA),
 - Lipusu for paclitaxel (Luye Pharma Group, Yantai, China),
 - Marqibo for vincristine (Talon Therapeutics, South San Francisco, USA)

ANTI CANCER LIPOSOMES

- The encapsulation of various types of anti-tumor drugs has been extensively studied by many scientific research laboratories around the world.
- Nonliposomal cisplatin and stealth liposomal cisplatin were both effective antitumor agents but, at tolerable dose levels, stealth lipsomal cisplatin was reported superior to nonliposomal cisplatin.
- Doxorubicin liposomes (Caelyx, Doxil): reduced dose and more efficacy
- A thermosensitive liposomal taxol formulation: significant reduction in tumor volume

A schematic illustration of an ideal multifunctional liposome with encapsulated drugs and genes, imaging agent, cell-penetrating agent and specific targeting moiety

NANOTECHNOLOGY IN GENETHERAPY

Non-viral and Viral Vectors for Gene Therapy

Neurodegenerative Diseases

Therapeutic genes miRNAs siRNAs Antisense oligonucelotides Drugs Therapeutic genes Models of disease

Hemagglutinin

VIROSOME

- Neuraminidase
- Phosphatidylcholine
- Phosphatidylethanolamine 9 77

NANOTECHNOLOGY IN CELL THERAPY

In cell therapy it is important to guide the cells to specific locations.

- To monitor and evaluate the engraftment in the host, cells are labeled ex vivo:
 - to distinguish the implanted cells from the host tissue cells
 - to follow their survival, migration, differentiation
 - To track regenerative impact of the cells in living subjects
- Nanotechnology could help to track and localize transplanted cells.

NANOTECHNOLOGY IN TISSUE ENGINEERING

SCAFFOLD MATERIALS

> Types of scaffold materials:

- Decellularised tissues (e.g. heart valves)
- Natural matrix or protein (such as collagen and fibrin)
- Synthetic polymers (such as polyglycolic acid (PGA), Poly lactic acid (PLA), polylactic-co-glycolic acid (PLGA), poly-4-hyrdoxybutyrate (P4HB), polyhydroxy alkanoate (PHA), Polycaprolactone (PCL)
- Hybrid scaffolds (combination of synthetic and natural polymers like PLGA/Chitosan, PU/Collagen, PLGA/Silk)

PLLA-Collagen

Courtesy of Seeram Ramakrishna, NUS Center for Nanofibers & Nanotechnology

Variety of Electrospun Nanofibers

Courtesy of Seeram Ramakrishna, NUS Center for Nanofibers & Nanotechnology

Nanofibrous tissue engineering bypass graft (PU)

